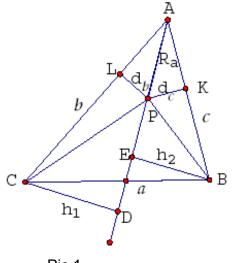
Basic inequalities with distances.

(Extraction from the notes on the theme "Inequalities with distances", Arkady Alt) It is well known inequality usually used as Lemma in the proof of

Erdos-Mordell inequality, but important by itself, inequality

(B1) $aR_a \geq bd_c + cd_b.$



Pic.1

Proof.

Let PK, PM, PL are perpendiculars from P to sides BC, CA, AB respectively. Then $d_a = |PK|$,

 $d_b = PL, d_c := PM.$

Let *LE* and *MQ* be perpendiculars to \overleftarrow{KP} . Since $\angle MPF = \angle KBM = \angle ABC$ and $\angle LPE = \angle LCK = \angle ACB$ then $MF = d_c \sin \angle ABC$ and $LF = d_b \sin \angle ACB$ and we

obtain $MF + LE \leq MQ + LQ = ML \iff d_c \sin \angle ABC + d_b \sin \angle ACB \leq ML$.

Since $\angle AMP = \angle ALP = 90^{\circ}$ then $R_a = AP$ is diameter of circumcircle for quadrilateral ALPM

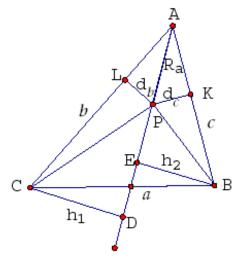
then by sin-theorem $R_a = \frac{ML}{\sin \angle CAB} \iff ML = R_a \sin \angle CAB$.

Thus $R_a \sin \angle CAB \ge d_c \sin \angle ABC + d_b \sin \angle ACB$ and multiplying both sides of this inequality by

2*R*, where *R* is circumradius of triangle *ABC*, we finally obtain $aR_a \ge bd_c + cd_b$. Equality condition in inequality (**B1**) holds iff EQ = 0 and FQ = 0, i.e. iff *ML* || *BC*. **Another basic inequality**.

Some times can be useful similar to (B1) inequality

(**B2**) $aR_a \geq bd_b + cd_c$.



Proof.

From similarity $\triangle PLA \sim \triangle CDA$ and $\triangle PKA \sim \triangle BEA$ we obtain, respectively: $\frac{d_b}{R_a} = \frac{h_1}{b} \Leftrightarrow h_1R_a = bd_b$ and $\frac{d_c}{R_a} = \frac{h_2}{c} \Leftrightarrow h_2R_a = cd_c$. Hence, $R_a(h_1 + h_2) = bd_b + cd_c$ and since $a \ge h_1 + h_2$ we finally obtain $aR_a \ge R_a(h_1 + h_2) = bd_b + cd_c$. Equality holds iff $AP \perp BC$.